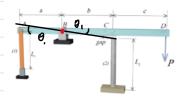

Stress

Friday, January 20, 2023 8:58 AM

Normal Strain


Monday, January 23, 2023 8:58 AM

Mechanics of Materials Page 2

$$E = 420 (1000 \cdot 1150 / 10^{6} + 1.6) \cdot 10^{6} = 7178.0 \text{ us}$$

A load P is applied at the end of a rigid beam that is just sufficient to close the gap between the rigid beam and the top of the column (2) at C. Then, the load P is increased until $\varepsilon_2 = 1220 \ \mu\epsilon$.[a = 4 ft,b = 6 ft, c = 4 ft, L₁ = 5 ft, L₂ = 3 ft, gap = 0.25 in.]

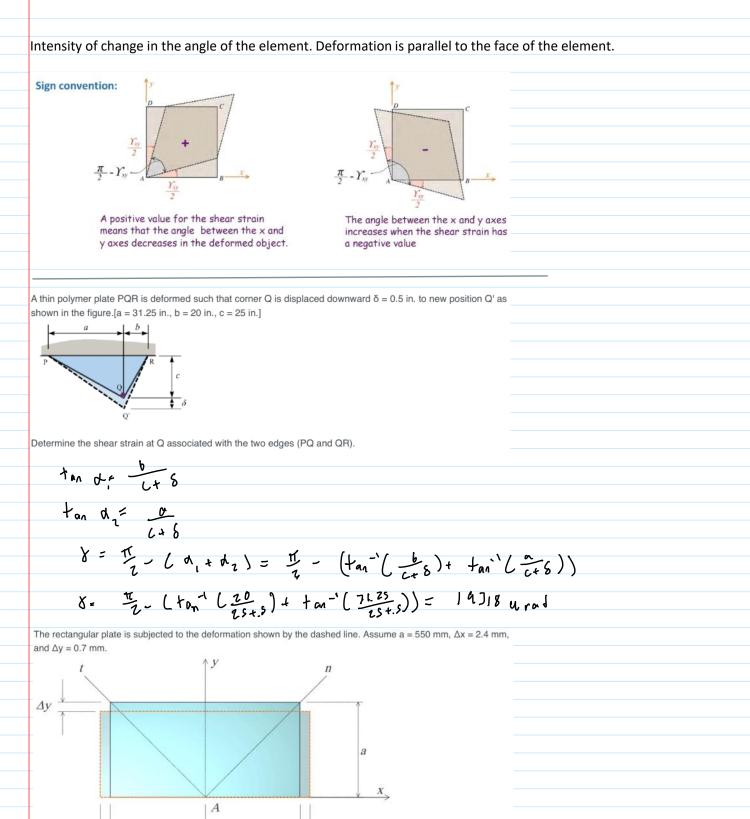
What is the strain in element (1) for the original load P, just sufficient enough to close the gap at C?

$$\begin{aligned} \mathcal{E}_{i} &= \underbrace{\sum_{l_{1}} \cdot \left(0^{b} - \frac{S_{i}}{n}\right)}_{b_{1}} = \underbrace{A^{a}P}_{b} \\ \mathcal{E}_{i}^{z} &= \underbrace{A^{a}P^{a}A}_{b^{2}L_{i}} + \underbrace{10^{b}}_{b^{2}L_{i}} = \underbrace{2777}_{b^{2}L_{i}} \\ \mathcal{E}_{i}^{z} &= \underbrace{S_{i}}_{b_{i}} \cdot \underbrace{10^{b}}_{b_{i}} = \underbrace{S_{i}^{z}}_{c_{i}} \underbrace{10^{b}}_{c_{i}} \\ \mathcal{E}_{i}^{z} &= \underbrace{S_{i}}_{b_{i}} \cdot \underbrace{10^{b}}_{b_{i}} \\ \mathcal{E}_{i}^{z} &= \underbrace{S_{i}}_{c_{i}} \cdot \underbrace{10^{b}}_{c_{i}} \\ \mathcal{E}_{i}^{z} &=$$

$$\mathcal{E}_1 = \underbrace{S_1 \cdot 10^6}_{L_1} \qquad \underbrace{S_2 = \underbrace{S_2 + g_{ap}}_{b}}_{a = \frac{5}{b}}$$

$$\mathcal{E}_{z} = \frac{\alpha(S_{z} + g^{\alpha} p)}{b L1} \quad 10^{6}$$

Shear Strain

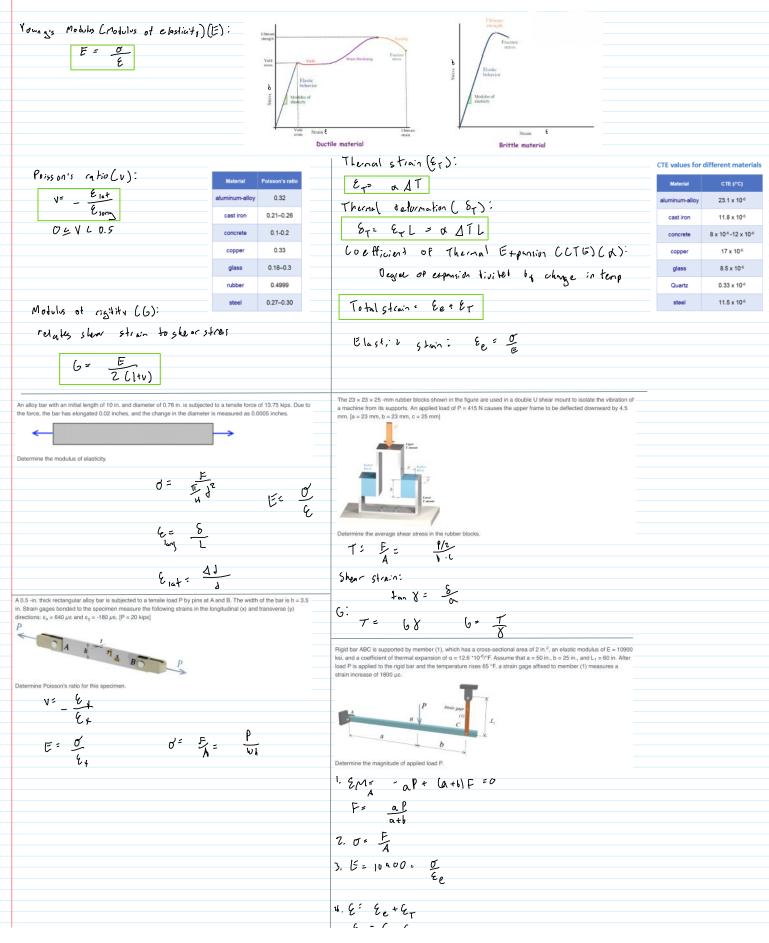

 Δx

0

a

Determine the shear strain yxv at point A.

Tuesday, January 24, 2023 3:05 PM

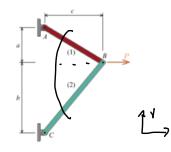


 Δx

Find gat at A $\gamma_{4+} = (t_{0,1}(t_{a}) - t_{0,1}(t_{a,+})) \cdot (D^{6})$ Find normal stain. $\xi_{x} = \frac{\Delta \psi}{\alpha} \cdot 10^{6}$ $E_{\gamma} = \frac{A_{\gamma}}{\alpha^{2}} \cdot 10^{6}$ $E_{\alpha} = \frac{\sqrt{(\alpha^{2} + \alpha^{2})} \cdot (\alpha - A_{\gamma})^{2} + (\alpha + A_{\gamma})^{2}}{\sqrt{\alpha^{2} + \alpha^{2}}} \cdot 10^{6}$ ¥

Mechanical Properties

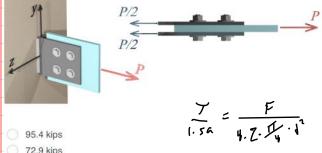
Friday, January 27, 2023 8:59 AM

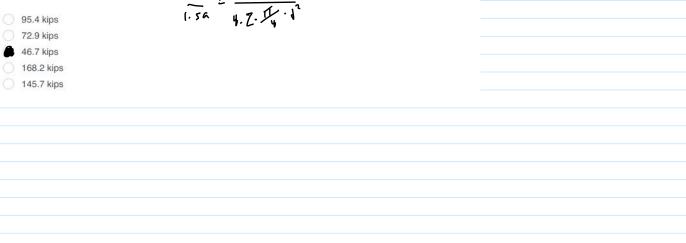


$$\frac{1}{5} \frac{1}{5} \frac{1}$$

Design Examples

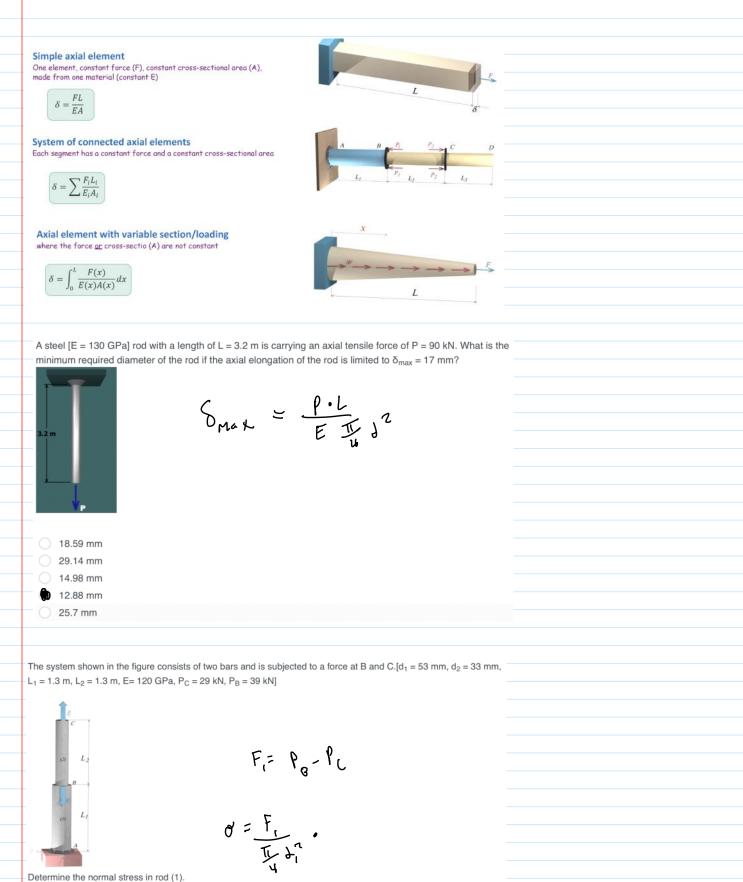
Monday, January 30, 2023 3:32 PM

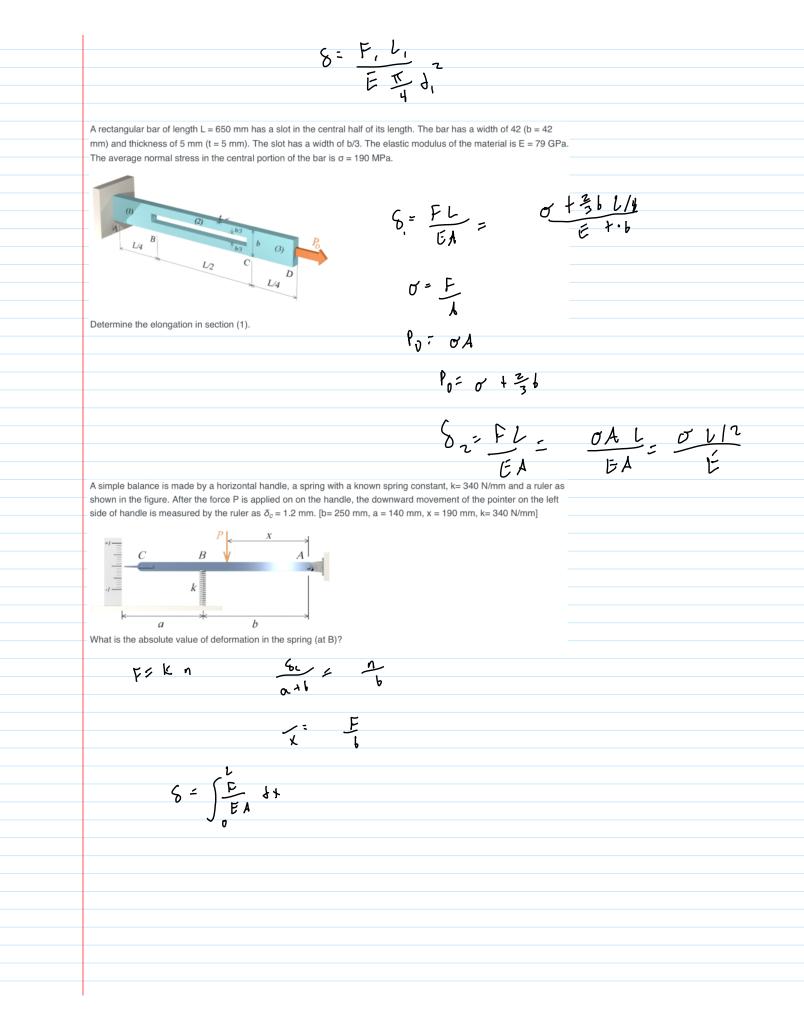

A concentrated load P is supported by two inclined bars as shown in the figure. Bar (1) is made of cold-rolled stainless steel [$\sigma_y = 170$ ksi] and has a cross sectional area of 2.05 in.². Bar (2) is made of 6061-T6 aluminum [$\sigma_y = 40$ ksi] and has a cross sectional area of 9 in.². A factor of safety of 1.67 is required for both bars. Dimensions of the assembly are a = 9 ft, b = 23 ft, and c = 12 ft.



Determine the magnitude of load P that can be applied to this assembly considering the stress in bar (1)

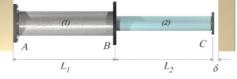
$$\begin{aligned} & \Sigma F_{\chi} = P - F_{1} \int_{0}^{\infty} \frac{c}{h + c^{\chi}} - F_{2} \int_{0}^{1} \frac{c}{h + c^{\chi}} \frac{c}{c} \\ & Z F_{1} = F_{1} \int_{0}^{\infty} \frac{h}{h + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} - F_{2} \int_{0}^{1} \frac{h}{h - c^{\chi}} \frac{c}{c} \\ & \frac{O}{16^{\chi} + c^{\chi}} \frac{c}{h - c} \\ & \frac{O}{16^{\chi} + c^{\chi}} \frac{c}{h - c} \\ & \frac{O}{16^{\chi} + c^{\chi}} \frac{c}{h - c} \\ & \frac{O}{16^{\chi} + c} \\ & \frac{O}{$$

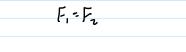

An axial element that is subjected to force P is connected by two plates and 4 bolts as shown in the figure. The ultimate shear stress of the pins is $\tau_y = 21$ ksi. The pins diameter is d = 0.75 in. The factor of safety is 1.59 .Determine the maximum allowable force (P) that can be applied to the following connection.



Deformation in Axial Members

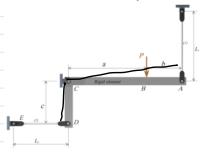
Wednesday, February 1, 2023 8:53 AM




Indeterminate Axial Members

Friday, February 3, 2023 1:22 PM

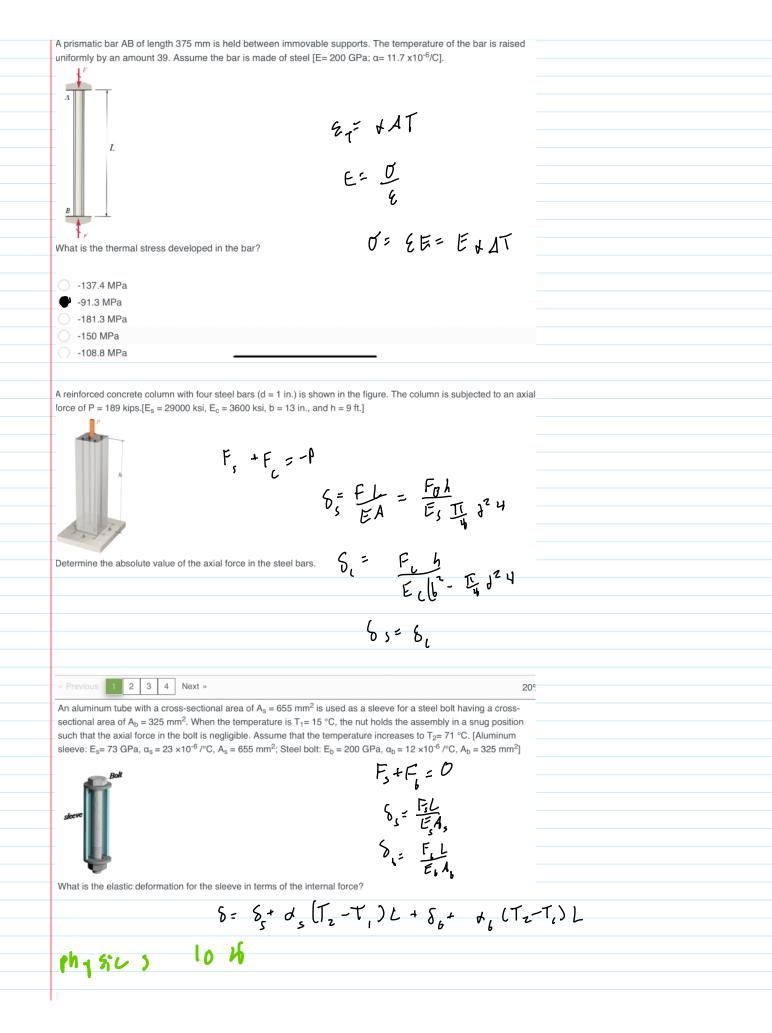
A pipe-rod system with flanges at ends A and C was supposed to fit exactly between two rigid walls, as shown in the figure. Element (1) is a steel pipe and element (2) is a solid steel rod. Bolts hold the flange at A against a rigid wall. Other bolts are installed in the flange at C and are tightened until the gap is closed. $[A_1 = 321 \text{ mm}^2, A_2 = 296 \text{ mm}^2, L_1 = 61 \text{ cm}, L_2 = 41 \text{ cm}, E_1 = E_2 = 200 \text{ GPa}, \delta = 0.25 \text{ mm}.]$


Determine the internal force in element (1) when the gap at C has been closed.

$$\begin{cases} \frac{F}{E} \frac{L_{i}}{EA_{i}} & \\ \frac{F_{i}}{EA_{i}} & \\ \end{cases} \frac{F_{i}}{EA_{i}} & \\ \end{cases} \frac{F_{i}}{EA_{i}} & \frac{F_{i}}{EA_{i}} & \\ \end{cases}$$

$$S_1 + S_2 = S_2$$

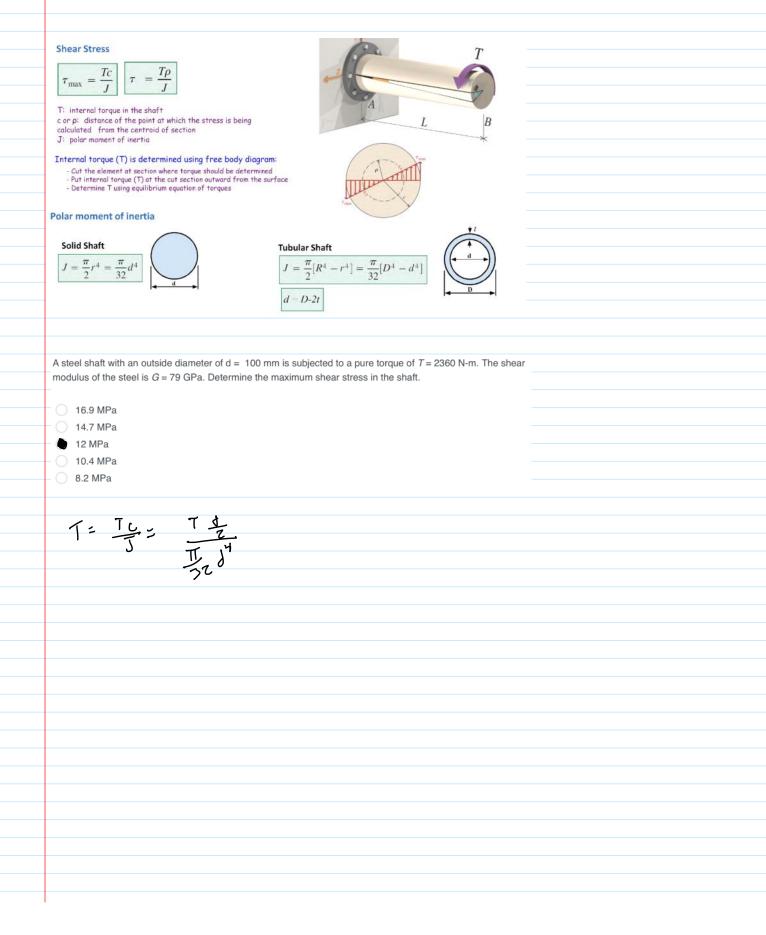
The rigid element ABCD is supported by a pin at C and two rods at A and D as shown in the figure. A load P is applied at B.[L₁ = 550 mm, A₁ = 65 mm², E₁ = 200 GPa, L₂ = 170 mm, A₂ = 628 mm², E₂ = 100 GPa, a = 550 mm, b = 250 mm, c = 200 mm, and P = 97 kN]



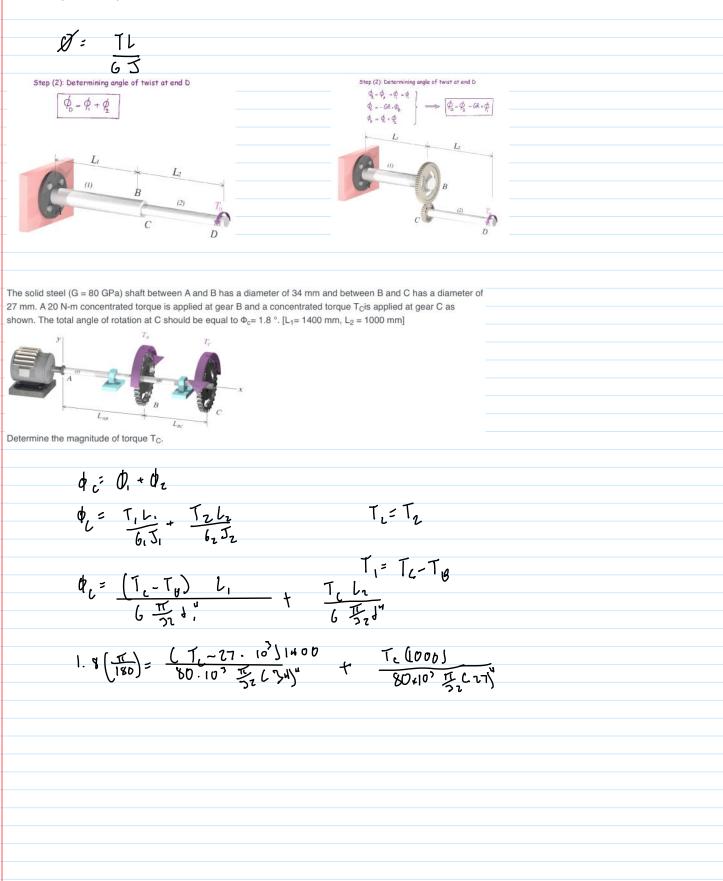
Determine the axial force in rod (1).

$$\mathcal{E}[M]_{c} = -P \cdot \omega + F_{1} \cdot (+b) - F_{2} \cdot c - \frac{\delta_{1}}{\zeta} = \frac{\delta_{2}}{\zeta}$$

$$S_{1}^{=} - \frac{F_{1} \cdot L_{1}}{E_{1} \cdot A_{1}}$$


$$S_{2} = - \frac{F_{2} \cdot L_{2}}{E_{2} \cdot A_{2}}$$

Mechanics of Materials Page 13


Torsion

Friday, February 10, 2023 9:21 AM

Twist

Wednesday, February 15, 2023 9:06 AM

A compound shaft drives several pulleys, as shown in the figure. Segments (1) and (2) of the compound shaft are hollow aluminum [$G_{12} = 4000$ ksi] tubes that have a polar moment of inertia of $J_{12} = 2.328$ in.⁴. Segments (3) and (4) are solid steel [$G_{34} = 13000$ ksi] shafts that have a polar moment of inertia of $J_{34} = 0.508$ in.⁴. The bearings shown allow the shaft to turn freely. [$L_1 = 75$ in., $L_2 = 30$ in., $L_3 = 35$ in., $L_4 = 20$ in., $T_B = 925$ lb-ft, $T_D = 525$ lb-ft, $T_E = 170$ lb-ft].

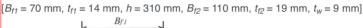
Calculate the rotation angle (including the correct sign) of pulley D with respect to pulley B.

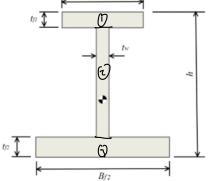
- -0.0289 rad
- -0.0363 rad
- -0.01062 rad
- -0.02474 rad
- -0.03226 rad

T2=TE-T0 $\phi = \frac{1}{12}$ T3= 16-T0

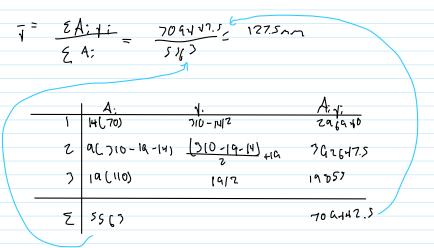
16 10+ Ft 12:0

The compound shaft shown in the figure consists of a d₁ = 37 mm solid bronze [G_{bronze} = 40 GPa] shaft (1) and a 29 mm solid steel [G_{steel} = 85 GPa] shaft (2). The compound shaft is subjected to torques of 830 N.m and 350 N.m at B and C, respectively. Let L₁ = 750 mm and L₂ = 1280 mm.


Determine the internal torque in shaft (2).

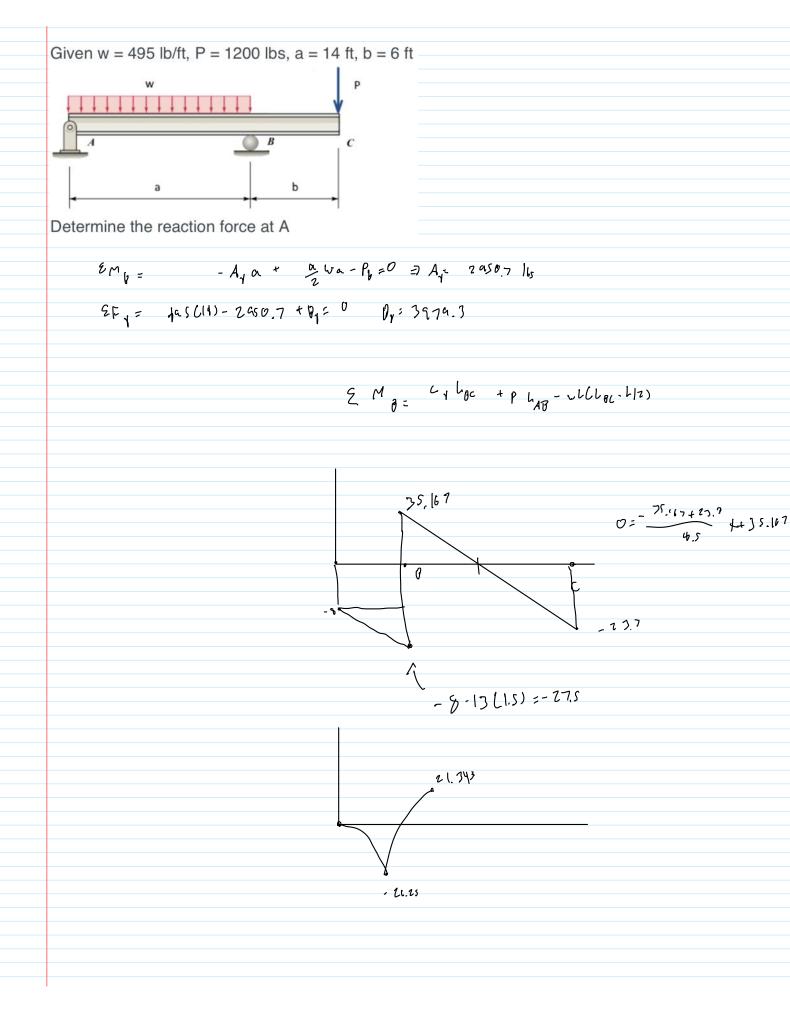

 $-T_{1}-T_{2}+T_{2}=0$ $T=\int_{1}+\int_{2}$

Centroid and Moment of Inertia


Monday, February 20, 2023 1:55 PM

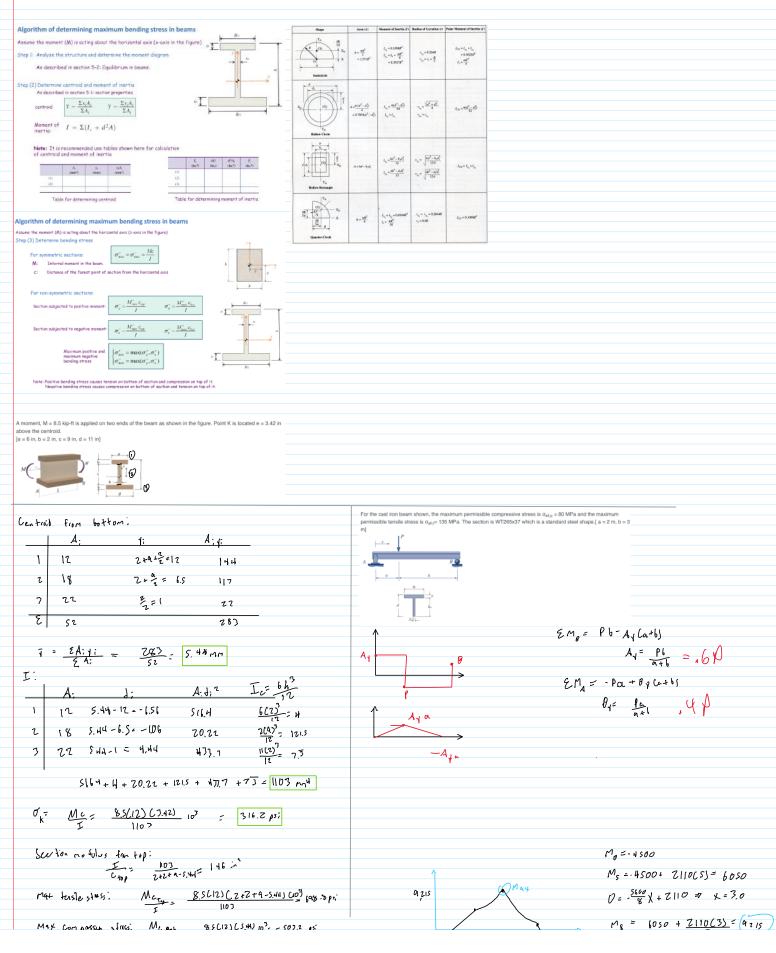
Determine the following section properties for the section shown in the figure.

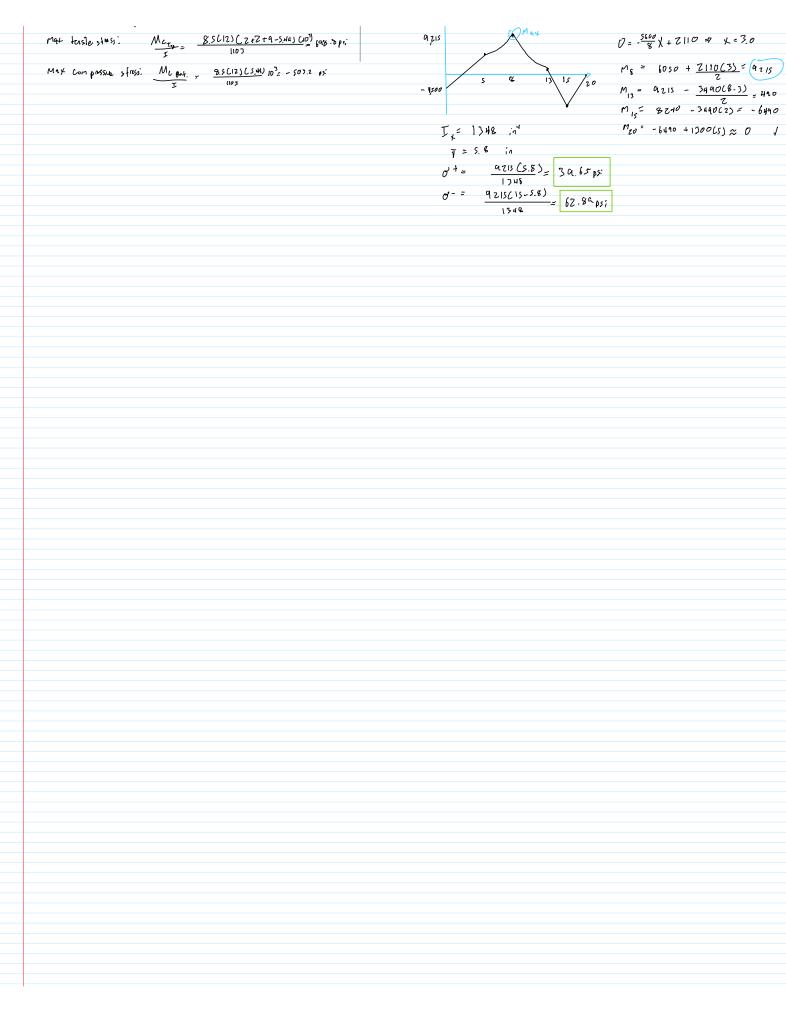
Determine the distance of centroid from the bottom of the section.



Fx= E(](+ + A; d; 2) = 16,007 + 301841245 +15940,450 +2,243,700+ 62874 +2910,160 = 77.5484 +10 0 m

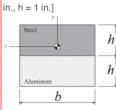
	<u>۸</u> -	٦.	113	Li bhi	
	<u> </u>	0,	A. O.	10 -12 3	
	9 80	127.2-203	301012.0	- (1) 200	
I	-1 60	(21.75)0)	20184245		16007
		_		11 7	-
2	2197	127.5-157.5	77117700	6 m	
-	0.1.)	1 6119 - 10 7.5	2,243,700	$\frac{\alpha(270)}{12} =$	15940450
			010110		, ,
	2040	127.5 - 9.5	29101160	LIMC on S	.071
	•			<u>10(Ju)</u> >	62874
				12	

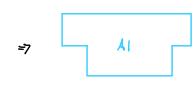

A W200x59 standard steel shape is strengthened by adding a b= 245 mm × t= 11 mm plate on the top of the section as shown in the figure.


Е	205	Designation	Area A	Depth d	Web thickness f _e	Flange width By	Flange thickness <i>l</i> _j	i,	5,	5	1,	8,	. 9
т 🖡		117	mm²			mm	mm	10 th num ⁴	10 ³ mm ³		10 ⁰ ment ⁴	10 ³ mm ³	
	V 1	14.2 W250 × 80	10200	257	9.40	254	15.0	126	983	111	42.0	338	.65.0
1	1	250×67	8580	257	8.89	204	35.7	103	805	110	22.2	218	51.1
1	_ ,	250×44.8	5700	267	7.62	148	13.0	70.8	\$31	111	6.95	94.2	34.8
210	X X	250 × 38.5	4910	262	6.60	147	11.2	59.9	457	110	5.87	80.1	34.5
	XX	250×32.7	4190	259	0.10	146	9.14	49.1	390	LOS	4.75	65.1	33.8
		250×22.3	2850	254	5.84	102	6.85	28.7	226	100	1.20	23.8	20.6
		$W200 \times 71$	00100	216	10.2	206	17.4	76.6	708	91.7	25.3	246	52.8
	JILY	200 × 59	7550	210	9.14	205	14.2	60.8	582	89.2	20.4	200	51.8
-		200 × 46.1	5880	203	7.34	203	11.0	45.8	451	88.1	15.4	152	51.3
		200×35.9	4570	201	0.22	165	10.3	24.4	342	\$6.9	7.62	92.3	40,9
		200×22.5	2860	200	6.22	102	8.00	20	193	\$3.6	1.42	27.9	22.3

Bending Stress

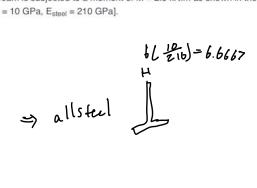
Wednesday, February 22, 2023 4:14 PM





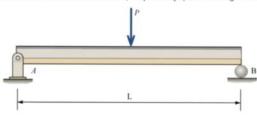
Composite Beam Transformation

Monday, February 27, 2023 11:13 AM


An aluminum bar is bonded to a stell bar to form a composite beam as shown.[E_A = 7200 ksi, E_S = 31500 ksi, b = 2.6

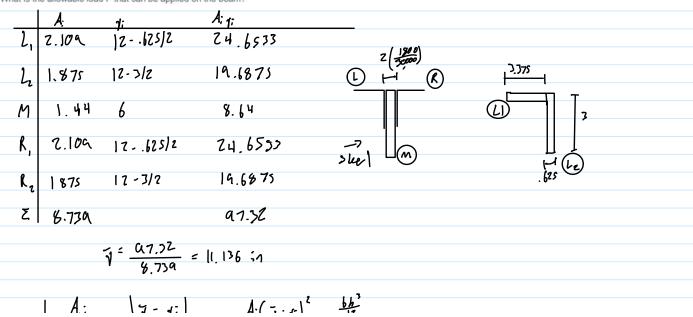
What is the distance to the centroid of the transformed aluminum section from the bottom surface of the beam?

A composite beam is made of a wood block and a steel plate on its bottom side. Determine the bending stress on the top and the bottom part of the beam if the beam is subjected to a moment of M = 2.8 kN.m as shown in the figure. [b=140 mm, h= 120 mm, t = 24 mm, $E_{wood} = 10$ GPa, $E_{steel} = 210$ GPa].



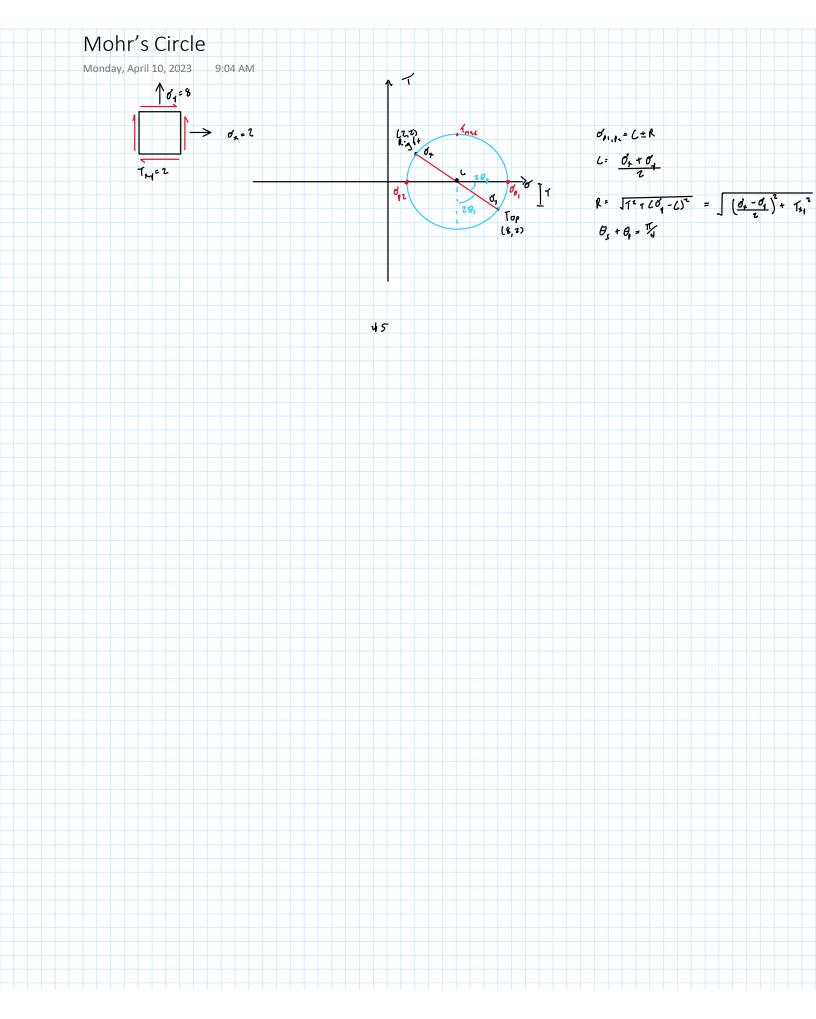
What is the distance of the centroid of the transformed section from the bottom of the section?

	A:	1;	Airi
T	800	24+12012	67200
Ø	2760	24/2	40JZ0
τ	4160		107520


7=28.85

A simple beam that is L= 4 yd long supports a concentrated load of P. The beam is constructed of two angle sections, each L4 x 3 x 5/8 (4 in. side on horizontal face), on either side of a 12 x 2 in. wood beam. The modulus of elasticity of the wood and steel are E_{wood} = 1800 ksi and E_{steel} = 30000 ksi, respectively. Assume the allowable stresses in the steel and wood are 16 ksi and and 1.1 ksi, respectively. (Note: Disregard the weight of the beam)

What is the allowable load P that can be applied on the beam?


8,734 2. 1.875 .636 .75843 .59125 2, M 1.44 5.156 38.28 17.28 R, 2.109 .5515 .6414 .06866 1875 .636 .75843 .59625 K, I.= 41.08 + 18.61=54.69 9 $O = \frac{M_{L}}{T} \Rightarrow M = O T = \frac{16}{C} = \frac{16}{11,136} = 85.76 \ 165 \ Max$ $0^{-2} = \frac{M_{c}}{I} = \frac{M_{c}}{R} = \frac{M_{c}}{C} = \frac{1.1(59.6a)}{12-11(12)} = 75.994$ lbs A wood beam (E= 16 GPa, $\sigma_{all,wood}$ = 10 MPa) is reinforced with attaching steel plates (E= 210 GPa, $\sigma_{all,Steel}$ = 180 MPa) on top and bottom of beam. [h_w = 170 mm, t_s = 9 mm, w = 95 mm] $h_{w} = I = Steel$ $t_{s} = b = v \frac{16}{210} = 7.2381$ Determine the moment of inertia of the transformed section if the section is transformed to a full steel section. $A_{i} \qquad \qquad \forall i \qquad A_{i,y}$ T 9(as)=85> 170+9+2 156802.5 M 7.2781(170)=1230,5 a+170/2 115664.762 a (as) = 85.2 % 3 847.5 0

Mechanics of Materials Page 25

2 76 404 .8

7,0 40,47

J- 42 g = Mc F Ø I C

